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I. INTRODUCTION

Wide-angle biconical antennas have been used for about two decades to produce

both vertically and horizontally polarized electromagnetic fields for use in electromagnetic

pulse (EMP) simulation. Approximate theoretical models have been used in conjunction

with field mapping to provide a practical basis for testing and evaluating military systems

against the EMP threat.

In recent years, however, there has been a greater interest in the development of

biconical antenna EMP simulators that can deliver pulses with very fast risetimes. A major

element of the waveform design for this type of simulator is the resistive loading of the

antenna, which predominantly affects the intermediate- to late-time character of the radiated

field. Over the years, numerous models have been developed to approximate the effects of
resistive loading on field behavior. However, to my knowledge, this investigation is the

first attempt to develop a rigorous theory leading to the prediction of the far fields from a

resistively loaded wide-angle biconical antenna.

Schelkunoff [1] appears to have been the first to develop an exact theory of the

biconical antenna in the absence of resistive loading. His method, although rigorously

correct, presented formidable computational difficulties at the time of its inception (1941).
The principal difficulties appeared to be the computation of the 0-dependent eigenfunctions

that are characteristic of the biconical antenna with perfectly conducting interior surfaces.

As shown in the appendix, this calculation requires the determination of the roots of

polynomial equations involving hundreds of terms. While this computation is feasible

today, it was virtually insurmountable in Schelkunoff's time.

Because of these numerical problems, emphasis was placed on obtaining

approximate solutions in selected regimes. For example, Tai [2] developed a method for

small-angle bicones, which is also briefly summarized by Kraus [3]. Techniques relevant

to wide-angle bicones were developed by Smith [4] and Tai [5]. In all these cases,

however, the issue of resistive loading was not addressed; perfectly interior conducting

boundaries were assumed.

The purpose of this investigation is to theoretically evaluate the possibility of

rigorously solving the biconical antenna problem with resistive loading. It appears that, at



least in a formal sense, I have been successful inasmuch as the methodology leads to

closure on a solution. My method is an extension of the Schelkunoff formalism in the

absence of resistive loading. Since this case forms the basic building block for the method,

I provide a comprehensive discussion of Schelkunoff's methodology [61 using Kong's

formalism [7]. This review is rendered in section 2.

In section 3 I extend the theory for the case of a resistively loaded bicone. The

resistively loaded case is found to require additional terms in the antenna region, compared

to the lossless case, so that the interior boundary condition is satisfied. The resulting

equations do not lend themselves to analytical solutions in closed form. Closure is

achieved through the introduction of an orthogonal basis of radial functions, which

ultimately reduces the problem to one that can be solved in matrix form. The computational

implementation of this theory remains to be developed.

A key element in the computational algorithm is the evaluation of the 0-dependent

eigenvalues, ui, and eigenfunctions, T,.(cos 00) of the biconical antenna in the absence of
I

resistive loading. These entities are essential in determining the parameters of the matrix

equation leading to the determination of the fields. The computational considerations for

Tu.(cos 00) are presented in the appendix.

2. REVIEW OF SCHELKUNOFF'S METHOD USING
KONG'S FORMALISM

This section establishes the basic formalism that will be used in the general

treatment of the resistively loaded biconical antenna of section 3. This material is extracted

from Kong's text [7]. No attempt is made to reproduce the step-by-step derivation of the

results. The reader is referred to Kong's text for more details. Wherever possible I have

used Kong's notation, the notable exception being the use of "f' for his "-i."

This summary is rendered in a manner which highlights those changes that are

necessary to extend the theory from the lossless case to the resistively loaded bicone.
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Figure 1 shows a model of the biconical antenna, and the corresponding coordinate

system. For the cases of interest only radial currents are present, with the accompanying

conditions

Hr=Ho=Eo=O ,(1

_) 0. (2)

/N

I ANTENNA AIR REGION4

Polar Axis

Figure 1. Geometric considerations for biconIcal antenna.
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Under the foregoing conditions, Maxwell's equations reduce to

r (3)

rsin [ (H sin 0)] = jowtjEr (4)

I k (rH) = jo ,E (5)

where we have replaced af/t by j1w.

In the air region, defined by the regime

r _- L = radius of bicone , (6)

the solution of equations (3) to (5) using separation of variables yields

=1 (2) (
H 2- bh (kr)PN (cos 6) (7)

N= I

(2)
E r N(N + 1)bNhN (kr)PN(cos 6) , (8)

2rrN=I

E Zo d rh (krco
-e 2rrk bN' Pk)N (o ) ,(9)

N=1

(2)

where PN(cos 0) is the Legendre polynomial of order N, hN (kr) is the Hankel function of

the second kind of degree N, the bN's are constants to be determined from the solution of

the problem, Z0 is the impedance of free space /-0e 0 , and

PN(cos O) =dPN (cos6 )/dO . (10)

It is important to note that the functional form of equations (7) to (9) will be the

same with or without resistive loading. The mathematical structure of the external fields

stems from the requirement that only outgoing waves be present outside the antenna, as

well as the condition of symmetry,

4



H-/(7r- 0)-= H (0) ,(a)
0 0

Eo(r-6)=Eo(O) (b) (11)

When equation (11) applies, only odd values of N are allowed in the summations of
.(2)

equations (7) to (9). The first Hankel function, h, is given by

(2)[j eikrh,)(kr)= 1-, (12)

h1 ~~ r]~' kr '(2

while the first Legendre polynomial and its derivative are given by

P1 = cos 0, (13)

P , = -sin 0. (14)

Using equations (12) to (14), the leading terms of HO, EO, and Er in the far field
(kr >> 1) become

H,=(-bAf ) e- , (15)
r-kr

e-jkr
E0 = ZO (-b=) k Z°He (16)

Er =jZ (-2bP1) e -j kr

(kr)2  
(17)

Examination of equations (15) to (17) shows that for practical purposes a determination of
bl will be sufficient to determine the fields in the test volume.

After some mathematical manipulation it can be shown that the interior fields, valid
in the region 00 < 0 <r - 60, can be written in the form

H - + aj(kr)T(cos 0) , (18)
2,zrsin 0 27r
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Er = 2r u(u + 1) aj,(kr)T,(cos ) , (19)
U

ZoVo (r) + jz o  a. d [rj.(kr)]T.(cos 0) (20)
421 z rsin 0 2xkr U rO

where

1. [P(cos 0) - PM(-cos 0)] (21)

21

T = dT/dO , (22)

Vo (L(23lo(r) =V Zc [j sin k(L- r) + Y~cos k(L- r)] (23)

Vo (r)= Vo (L) cos k(L- r) +jYtZ sinc k(L- r) I , (24)

Z In cot 00
Z = r 2 characteristic impedance of bicone , (25)

ju(kr) is the spherical Bessel function, and the au's are constants, which, likc the bN's of
the exterior region, are to be determined from the solution to the problem. The terminating

admittance Y is likewise determined from the solution.

In contrast to equations (7) to (9), in which the summation index is defined, the
values of u in equations (18) to (20) are determined from the boundary condition in the

antenna region. In the absence of resistive loading we require that

Er (00) = Er (r - 0) = 0 (26)

Based on equation (19), the specific values of u which will satisfy equation (26) are

solutions of the equation

T(cos o) = Tu(cos (,z- 0)) 0 (a)

which reduce to (27)

P(cos 0)- Pu(-cos 0o )=0 .(b)
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The Pu's of equation (27) are not Legendre polynomials, but are Legendre
functions since u is not generally an integer. Appropriate analytical expressions for Pu that
are necessary to solve equation (27), and hence determine the values of u, can be found in
Schelkunoff [61, Abramowitz and Stegor [8], and Erd6lyi et al [9]. For the time being we

simply assume that equation (27) has been solved and the values of u determined. Thus,

the summation index of equations (18) to (20) is defined.

The complete solution to the problem is now found by matching the boundary

conditions at r = L. Using equation (23) we have

1o(L) YVo(L) , (28)

which when inserted in equation (18) gives

H (r =L)= YtV (L) + a j," (kL)u,(cos 0) (29)
21rL sin 0 2

Multiplying both sides of equation (29) by sin 0T, (cos 0) and integrating from

00 to r - 0( gives

a - N2(kL)2  sin OH (r = L)Tu(cos 8) dO , (30)

where we have used the normalization

sin 0,(cos 0) !",(cos 6) dO 
(31)

Equation (31) is a general property of the Legendre functions which satisfies the boundary
condition of equation (27), with Nu being the associated normalization constant.

Equation (30) provides a connection between the au's and the bN's through

substitution of equation (7). We have

a. = ,bN '(32)
N=I

where
(2) _ o

= N. i.(kL) ° s 0 T.(cos 0 PN(cos 6) dO (33)

7



We should also recall in passing that the functional form of Ho and E, as given by

equations (18) and (20), respectively, ensures that for both exterior and interior regions the

following conditions will be satisfied:

HO()= Hr- 0) , (a)

E0(0) =EoOr- 0) (b) (34)

A A
If we now define au and bN to be the components of column vectors a and b,

respectively, and a,,N to be the elements of a matrix A, we can write equation (32) in the

compact matrix form

A -A

=Ab (35)

The second relationship between the au's and bN's is obtained by requiring

continuity of E0 at the boundary. From equation (9) we have

LE(r bNGN(kL)PN(COS ) (36)
N=1

where

GN (kL) = {-- [rhN (kr)]} (37)
r ~r=L (7

Multiplying both sides of equation (36) by sin 0PN(Cos 0) and integrating from 0 to r

gives

bN 2N(N + 1) 2 irk )'sin LEo(r=L)P.(cos 6) dO (38)
2N + 1 jZoGN(kL iL

where we have used the relationship

2N + 1 ifN=N'

fsin OdOPN (COs ) PN'(COs 6)= 2N(N + 1)  (39)
N" N0o 1 if N N' (9

Using equation (20) applied for r -- L in equation (38) yields

Vo (L)
ZN=jfNaU+KN ' (40)

U

8



where the relevant constants are defined as follows:

2N(N + 1) Fu(kL) 6) sin 6 PN(cos0)T(cs0)dO (41)
#Nu = 2N + I GN(kL) Lco

0

. 4N(N + 1) kKN=-J 2N+l GN(kL) PN(CoS 00) (42)

F.(kL) J-4 {Arjkr)]} (43)

The derivation of equation (40) was based on the requirement that EO (r = L) : 0 when 0
lies outside the limits 00 - 0 7r - 00.

By identifying KN as the Nth component of the column vector K and I3Nu as the

element of the matrix §, we can recast equation (40) in the form
A A + (vo ) (44)

The termination impedance, Yt, can now be determined from equations (35), (44),
(29), and (7). This is accomplished by first integrating equation (29) from 00 to 7r - 00.

We have

Y=- ZcV0(L) - H(r=L)dO . (45)

We now substitute equation (7) into equation (45) to obtain
-ZoL I b (42)

Yt ZcVo(L) 7r bJ'V ( cOs 00) (46)
N=I

The foregoing expression can also be cast in matrix form by introducing the

(2)
transpose of the column vector whose components are hN (kL)P (cos 06 ). Thus, we

write equation (46) in the form

_-Z 0 L 1ATA.Yt -Y Zc(L ) 7r , (47)

/'TAwhere is the transpose of and is a row vector.

9



In an actual computation we will truncate the series for u and the series for N after a
finite number of terms. However, the maximum number of terms used in the respective

series may differ since the number of terms required to describe the fields in the interior and
exterior regions may not be the same. This does not place any restriction on the theory or
the method of solution. It is convenient in this report to conceptually regard the u and N
series as being truncated after the same number of terms, say T. Let us assume that this is

AA A A
done so that A and/6 are now ?i x if matrices and a, b, K, and are if-dimensional vectors.

We now substitute equation (35) into equation (44) to obtain

b = - )  (48)
zc

where 0 is the matrix

u = T -/ , (49)

and T is the identity matrix. The solution of equation (48) is

A = V (L)C -1 A
b - K(50)

where & -1 is the inverse of U.

Substituting equation (50) into equation (47) gives the following expression for the

admittance:

Y,-ZLT . (51)

Examination of the terms of equation (51) shows that Yt is a function of the bicone angle
00, radial dimension L, and wavenumber (frequency) k. For specified values of L and 00,

the admittance can be expressed as a function of frequency o).

Once Yt(w) is determined from equation (51), the remaining calculation proceeds as

follows: We initially determine Vo(L) from a knowledge of the source voltage V0 (O).

Using equation (24) we have

V0 (L) = (cos kL + jY1 Z, sin kL)-I Vo (0) (52)

Substituting equation (52) into equation (50) gives &, and the external fields are then

determined from equation (7).

10



3. SOLUTION WITH RESISTIVE LOADING

The deduction of the solution with resistive loading is not an obvious extension of

the lossless case. A fundamental aspect of the lossless case was that the interior fields were

made up of modes with index u determined from the solution of the interior boundary

condition

E,(0o) = E,(ic - 00) = 0 (53)

This led to equation (27) and the determination of the values of u.

When resistive loading is considered, the new boundary condition at the walls

becomes

E,( 0 ) = E,(7r - 0o) = Zj(r) I (r) (54)

where lo,(r) is the wall current and Z(o(r) is the surface impedance. The wall current is

given by

IJ(r) = 27rr sin OoH (00) (55)

The existence of resistive losses requires modification of the functional form of the

fields in the interior region. In the absence of resistive loading, the interior fields are given

by equations (18) to (20) with the assumed noninteger values of u being determined from

the solution of equation (27).

When the boundary condition of equation (54) replaces that of equation (53)

because of resistive loading, the structure of the fields given by equations (18) to (20) does

not appear to be sufficient in itself to solve the problem. I have not been able to find a

means to uniquely determine the values of u that satisfy equation (54) and the other

boundary conditions using the field representation of equations (18) to (20).

It appears, however, that a unique solution to the problem can be obtained if one

adds to the field components of equations (18) to (20) additional terms involving integer

values of the summation index, which are also solutions of the basic equations in the

antenna region. These terms are necessary to satisfy the boundary condition of equation

(54) and do not exist in the lossless case.

The deduction of the 0 dependence of equations (18) to (20) was based on the fact

that the two linearly independent solutions for H0 in the 0 dimension are derivatives of

11



Legendre functions of the first and second kind, Pv(cos 0) and Qv(cos 0), respectively

[6-9]. In the condition where

v = u integer , (56)

the function Qu satisfies the equation

Qu(cos 0)= Pu(-cos 6) . (57)

Using the result

cos( - 0) = --cos 0 , (58)

combined with equation (57) and the symmetry requirement

HO(z - 0) = HO(9) ,(59)

led to the choice of

TU (P - Q) (Pu (cos O)-Pu (-cos 6)) (60)

as the only candidate 6-dependent solution (compare equation (21)).

When we allow v to be an integer, the 6-dependent part of the solution changes as

follows. For the case where

v = N = integer

we have
Nq

P ) (-1) (N+ q) sin2q ()(

PNCOSv ~ 2 in 2 (61)
q=0 (N- q)!(q!)2

aN(cos 0) = PN(cos ) ln(cot-6) -"' N-rnr-i (62)
M= 1

Using the foregoing equations we easily see that

PN(--cos 0) = (-1) NPN(COS 6) , (63)

QN(-CoS 6) = (-1)N +I QN(COS 0) (64)

Employing the symmetry condition of equation (59) requires that only odd powers

of N be used for the PN terms and even powers of N for the QN terms.

12



When integer terms are added to equations (18) to (20), the expressions for the
fields can be written in the form

H - 10 (r) -+1 Xa~ju (kr)Tf, (cos 0) +1 &mjm~,, (kr) F. (Cos 0) , (65)* 2irsin 0 27 27r

Er = ! X0Y u (u+ 1) aj. (kr)T. (cos 0) + -L-1 Xm(m + 1) ii ..im (kr) I, (cos 6 (6

2irkr 27rkr )(6

E0 - Z0 V0 (r) + jZ 0 'a'F. kr T. (cos 0) + JZ0  imk)F cs6 (7

Z,2nrr sin 06 2irkr ~d' M' m' 'Sr fm2rskr (7

where

Fu(kr) =~ [rj,(kr)] (68)

Fm,(kr) = [rJ,,(kr)] (69)

Fm(cos 6) = Pm..(Cos 0) if m =odd ,(a)

Fm (cos 0) =Qm,(coO) if m even ,(b) (70)

and the dm's are additional constants to be determined from the problem in the resistively

loaded case. The index m is an integer.

We assume that at the boundary 6 = 60. In addition, we continue to retain the

equation

Tu (cos 00) = 0 ,(71)

so that the noninteger values of u remain unchanged, and hence are known.

The relationship between the dm's and d 's is determined from the boundary
condition of equation (54). Using equations (23) and (55) we have

z. [j1V (L)Z,-' sin k (L - r) + V (L)Y, cos k(L - r)]

13



+Zrsin 00 x I aju(kr)Tu.(cos90)+ Zj sin 001a. m(cos 0 )

jZ .Y m(m + 1) ajm(kr)F (cos 0(72)

2 irkr (2

There does not appear to be a simple way to relate the dm's to the au's, but it can be

accomplished in matrix form by assuming that in the region

0:_ r !:-L , (73)

we can expand all the r-dependent functions in an orthonormal basis using a complete (and

as yet unspecified) set of functions on(r) which satisfy the standard conditions
L

JOdn(r) 0m(r) dr = , (74)

where n and m are integers and ,n is the Kronecker delta.

The aforementioned procedure is accomplished by (1) multiplying both sides of

equation (72) by r, (2) setting

,(r) = ZJZo

and (3) using the following relationships:

rysin k(L - r) = d,,kn(r) (75)

n=0

rycos k(L - r) = fn4p(r) , (76)
n=0

,yr2j.(kr) = g.n4n(r) ' (77)
n=0

'r2jm (kr) = I gnn On(r) , (78)
n=

14



Jm(kr) = hnmn(r , (79)
n=O

where the dn's, fA's, gnu's, gnm's, and hnm'S are constants determined from the
orthogonality condition of equation (74). For example,

L

gnm= J r2j(kr)On(r) dr (80)

Since the on's form a complete set, the substitution of equations (75) to (79) into

equation (72) yields

jV°(L)Zc- 1 d n + V°(L)Ytfn + sin 0o gT (cos Oo)a u
U

+sin 0o g9 = M (cos Oo)m- 2= k Xm(m+1)hudm (81)
m m

By defining dn,fn, au, and a- to be components in the same dimensional vector

space, we can cast equation (81) in the matrix form

-1 A+, Y A+ A + =A _A

jVo(L)ZcdV L)Yf +a+ a =H a , (82)

where

= sin 0 gjTu(cos 00) (a)

G m =sin OognmFm(COS 00) (b) (83)

-n r (m) (m + 1)hm

A
The solution of equation (82) which renders a in terms of b is given by

A A A

= 1 a=+jVo(L)Zc A +Vo(L) tr (84)

where

15



i7=(H-j) G(85)

'k =(H -G) d(86)
A= (TY _-)- , (6

( 87)

Using equation (84), the determination of the admittance Yt and the constants
Aa, d, and b follows in a manner analogous to the lossless case considered in the previous

section (compare the analysis beginning with eq (28)). For brevity, some of the obvious

intermediate steps will be omitted. From equation (65) we have
( r= L ) = Y O(L) +aJ (cs0 ' dmJm(kL) f (CS 0) (88)

H( L)=2rL sinO (cos 2r

If we now multiply equation (88) by sin 0 1 (cos 0) and integrate from 00 to

r- O0, and then use equation (7) for Ho(r = L), we obtain the following result:

A -Aa = Ab -(a (89)

where A is the previously defined matrix, and 0 is a matrix whose components are

X-0,

_Jm( kL ) 0 ".
Qu - Nj (kL) sin 0 T(cos 0) tm (cos 0) dO (

From equation (38) we have the relationship which relates bN to the interior fields.

However, we must now use equation (67) for E0. Inserting equation (67) into (38) gives

bN=jf JNgau+KVO(L)Zl + _ffm , (91)
U m

where

2N(2N + 1) Fm(kL) (-(

2N+ sin OAN (cos )I m(cos 0) dO. (92)

16



It is observed that equation (91) is similar in mathematical structure to equation

(40); the matrix equivalent becomes
A ='jA -1 ... A

=B + KNVo(L) Z-+Ba B (93)

which is likewise analogous to equation (44). B is the matrix whose elements are given by

equation (92).

The final required equation for determining the unknowns in the system is found by

integrating equation (88) between 00 and z - 00. There results

-Z 0 L 1 A ZoL

Z'o(L) I b ZCVo(L) I9

A

where W is a column vector whose components are I,(kL)Fm(cos 0oD

A A

In summary, there are four unknowns in the problem: Yt, a , b, and i. These are

determined from equations (84), (89), (93), and (94). The simultaneous solution of these

matrix equations involves many intermediate steps which for brevity are not presented.

The final result is
^T A ATA 1AT

aX X6  + a X3 +jaZ
Yt AT- A , (95)

1+a4 MfX _-A Tj1 a W€ Xl x5

where
_z 0L

a- , (a)ZC

A -
^

X2 = AX (c)

M, = (I -BA)- -B 0) (d)

M 2 =  I- fl (e)

X3 = (I -VM 2) VX 2  (
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A (I - I (g)
X 4 = (I -VM 2) , (g)

Ax =(I" -VM2) ,(h)

A A - A -I- A

X6 = X1 + MIX3 +jZc MX (i) (96)

A A
Once Yj is computed, the other parameters, a, b, and a-, are determined from

equations (84), (89), (90), and (94).

4. CONCLUSION

In this study we have demonstrated that a methodology for calculating the fields of
a biconical antenna with resistive loading is theoretically and computationally feasible. The

technique draws on the modal analysis concept originally developed by Schelkunoff for the
case without resistive loading. However, the extension to the resistively loaded case is

considerably more complex from both a conceptual and computational viewpoint.

The resistively loaded case is found to require the existence of additional terms in

the antenna region (compared to the lossless case) so that the interior boundary condition is
satisfied. The solution of the interior boundary value equation appears to require the
introduction of an orthogonal basis of functions, on(r), defined in the range 0 < r <L,

where r is the radial coordinate and L is the bicone radius. We have not as yet selected the
on(r); however, this does not limit the theoretical analysis. Using the basis functions,
On(r), a matrix formulation is developed. In order to achieve a practical solution to the

problem, it will be necessary to assume a finite number of terms. This number has not
been determined, but will surely depend on the bicone angle 60 and radius L, and the

magnitude and radial distribution of the resistive loading.

In summary, the implementation of the technique developed in this investigation
requires the selection of on(r) and the evaluation of certain mathematical functions and

integrals which depend on on(r). When this is accomplished it should be a relatively easy

matter to predict the near and far fields from a resistively loaded biconical antenna.
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APPENDIX: DETERMINATION OF THE ROOTS ui AND
EIGENFUNCTIONS Tui

In this appendix I address the determination of the roots ui of the equation

T.(cos 00) =[p (cos 00) - P,(-cos 00)] = 0 , (A-i)

where Pui is the Legendre function of order ui, and 00 is the bicone angle of figure 1 in the

body of the report. I also discuss the determination of the 6-dependence of ,he function

T (Cos 6) -1 [P. (cos 9) - P. (-cos 0)]T,(o 2 (A-2)

Letting

z0= cos , (A-3)

we write equation (A- 1) in the form

2 [P,(Zo) - P. (-zo)] 0 (A-4)

Since ui is not generallly an integer, the complete series expansion for Pu must be used.

This series can be deduced from the hypergeometric function [I] through the relationship

P1(zo) =1F(-u*u+ 1 ; L:_ ) I(A-5)
'2

which is valid in the range I I - zo < 2. This latter requirement is satisfied for the angles of

interest. The series formula for the hypergeometric function of equation (A-5) can be

deduced from the general formula (compare chapter 15 of the reference).

F(a, b; c; z_) (a), (b), Zo'

,4-o (c), n! ' (A-6)
n=0

where (a), (b)n, and (c), are Pochhammer symbols defined by the equation

[ . '(4 + n)
' (A-7)

with F being the gamma function.
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Setting

a=-u , (a)

b =u + , (b) (A-8)

c= 1, (c)

and using the properties of the gamma function gives

(a), = (-u)(-u + 1)(-u + 2) ... (-u + n - 1) , (a)

(b)n = (U + 1)(u + 2) ... (u + n) .(b) (A-9)

The resulting series expression for Pu(z) is

P (a),(b)n (1 ZO) n

= 1+ (n!) 2n (A-1)

When equation (A-10) and its counterpart for Pu(-zO) are inserted in equation

(A-4), we have a polynomial of infinite order for the determination of the roots ui. Since

this is impossible to deal with, it is necessary to approximate Pu(z0 ) and Pu(-zo) by a finite

number of terms.

In all cases equation (A-10) is a well-behaved representation of Pu(zO). Figures

A- I and A-2 show the behavior of Pu(zo) and Pu(-zo), respectively, for selected values of

z0 = cos 00 calculated from equation (A-10) using 128 terms in the summation and

including double precision.

The need for double precision in the computation of Pu(zO) and Pu(-zo) arises from

the oscillatory nature of the individual tcrms in the series, which can become extremely

large for correspondingly large values of u. Thus, in the absence of double precision, we

would be faced with large round-off errors resulting from the subtraction of sequences of

two extremely large numbers. These uncertainties would be pronounced in the

determination of the roots of equation (A-4). The use of double precision combined with

128 terms in the series of Pu(zo) and Pu(-zo) appears to circumvent the aforementioned

problem.

For very large values of u, even 128 terms may not be sufficient to accurately
compute Pu(±zo). Fortunately, in this case the roots of equation (A-4) may be determined

using the asymptotic frms of Pu(±zo). The asymptotic expressions [2] for the Legendre

functions also provide an excellent starting guess for the ZBRAC and RTBIS root finding

algorithms [31 which are used to solve equation (A-6).
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Several asymptotic expressions were examined, and the one which seems most

appropriate for this investigation is that rendered by Magnus and Oberhettinger [2]. The

asymptotic expression for the Legendre function of order u is denoted by P(cos 6) and is

given by
2risi cosj 1+i) . A-i

P~ (c = =2 r '
P..(cos 0) = msi 0 [(Ui+ 0 -- ;(5=O<-.,e.>0, luI >>"1). (A-1 1)

Using equation (A-11) in equation (A-4) and recalling that

-z0 = cos(7r- 00) (A- 12)

gives the following equation for the asymptotic roots i.:

cos[(i + )o- - 0] -cos [(u+ )(r - 0o)---] = 0 (A-13)

Using the formula

cos a -cos b =-2 sin [+ (a +b)] sin [+(a -b)] (A-14)

and ietting

a=v -0  (a)

1

i= =i + 2 (C)

reduces equation (A- 13) to the form
sin (W. /-) sint [1v/( -- 00 ) 0 (A- 16)

Since we are looking for solutions where i is not an integer, the solution of equation

(A-16) is given by

oiQ- O)=Mr m ,(A-17)

where m is an integer. Letting
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-0 - - 0o (A-18)2

gives
-._ m~r I
S00 2 (A-19)

As observed from equation (A-19), every angle 60 generates an infinite set of roots

with magnitudes increasing with the index m. Table A-1 compares the asymptotic roots
given by equation (A- 19) and the exact roots determined from the numerical solution of

equation (A-4).

The asymptotic values appear to provide a good approximation at the smaller values
of ui with excellent agreement occurring at the larger ones. This is consistent with the

theoretical expectations.

Table A-1. Comparison between exact and asymptotic roots

00 (degrees) JRoot no. Asymptotic value, ai Exact value ui

15.0 1 1.90000 1.80156
15.0 2 4.30000 4.25625
15.0 3 6.70000 6.67405
15.0 4 9.10000 9.04312
15.0 5 11.5000 11.4272

30.0 1 2.50000 2.44524
30.0 2 5.50000 5.45228
30.0 3 8.50000 8.45644
30.0 4 11.5000 11.4999
30.0 5 14.5000 14.4999

45.0 1 3.50000 3.45397
45.0 2 7.50000 7.48620
45.0 3 11.5000 11.4812
45.0 4 15.5000 15.4990
45.0 5 19.5000 19.4997

60.0 1 5.50000 5.48263
60.0 2 11.5000 11.4999
60.0 3 17.5000 17.4993
60.0 4 23.5000 23.5000
60.0 5 29.5000 29.5001

75.0 1 11.5000 11.4870
75.0 2 23.5000 23.4998
75.0 3 35.5000 35.5005
75.0 4 47.5000 47.5000
75.0 5 59.5000 59.4999
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It should be noted in passing that Schelkunoff also obtained estimates for the
asymptotic roots [4] which agree with equation (A-19) only in the limit where mzlo0 >>

1/2. He did not attempt to generate numerical solutions relevant to our range of interest.

After the roots are determined it is also necessary to calculate the angular

dependence of the function

T..(cos 0) - [P. (cos 0) -P..(-cos 0)] (A-20)
1 2 UA S

which from equation (A-4) is observed to satisfy the condition

T, (cos 00) = Ti. [cos(n - 00)]= T..(-cos 00) = 0 (A-21)

Figures A-3 to A-7 show plots of Tui(z = cos 0), Pui(z = cos 0), and
Pi(-z = -cos 0) as a function of 0 for the first five roots when 00 = 300. Using equation

(A- 10), we can compute the angular dependence of Tui(z) from the expression

128

T..(cos 0) = I (a) (b )n [(1- cos O)n - ( + cos O) n] (A-22)
T= I (n!) 2

where the (a)n and (b)n are calculated from equation (A-9) with the ui's given in table A-1

for O0 = 30'.

It is also of interest to examine the sensitivity of the behavior of Tui(cos 0) to the

choice of the asymptotic versus exact root as a function of 0. Figures A-8 to A-12 show

the comparison between Tui and T, for the first five modes when O0 = 300. As expected,

the differences become smaller as m increases from 1 to 5.

Figure A- 13 shows the comparison between the TU's for the smallest root, which

occurs in the O0 = 15', m = 1 case. For this situation it is observed that the difference can

become quite large, indicating that the asymptotic approximation is not especially good. On

the other hand, figure A- 14 shows the 00 = 7 5 ', m = 1 case, which corresponds to a

relatively large root of 11.50 (compare table A-i). As observed from figure A-14 the

differences in this case are imperceptible.
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ATTN: LEGAL OFFICE, SLCIS-CC

USAISC
ATTN: RECORD COPY, AMSLC-IM-VA

ATTN: TECHNICAL PUBLISHING BRANCH,

AMSLC-IM-VP

HARRY DIAMOND LABORATORIES HARRY DIAMOND LABORATORIES
ATTN: D/DIVISION DIRECTORS ATTN: CHIEF, SLCHD-NW-EP
ATTN: CHIEF SCIENTIST, SLCHD-CS ATTN: CHIEF, SLCHD-NW-EH
ATTN: LIBRARY SLCHD-TL (3 COPIES) ATTN: CHIEF, SLCHD-NW-ES
ATTN: LIBRARY SLCHD-TL (WOODBRIDGE) ATTN: CHIEF, SLCHD-NW-CS
ATTN: CHIEF, SLCHD-IT-EA ATTN: CHIEF, SLCHD-NW-P
ATTN: B. ZABLUDOWSKI, SLCHD-TA-ET ATTN: CHIEF, SLCHD-NW-R
ATTN: J.M. DEHART, SLCHD-TA-SE ATTN: CHIEF, SLCHD-NW-RP
ATTN: DIRECTOR, SLCHD-NW ATTN: CHIEF, SLCHD-NW-RS
ATTN: DEPUTY DIRECTOR, SLCHD-NW-E ATTN: CHIEF, SLCHD-NW-TN
ATTN: E. PATRICK, SLCHD-NW-E ATTN: CHIEF, SLCHD-NW-TS

ATTN: CHIEF, SLCHD-HPM
ATTN: T. WALTEMYER, SLCHD-NW-ES

(10 COPIES)
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